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In the presence of large uncertainties, a control system needs to be able to adapt rapidly to regain per-
formance. Fast adaptation is referred to the implementation of adaptive control with a large adaptive gain to
reduce the tracking error rapidly. However, a large adaptive gain can lead to high-frequency oscillations which
can adversely affect robustness of an adaptive control law. A new adaptive control modification is presented
that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as
with the standard model-reference adaptive control. The modification is based on the minimization of the Y2

norm of the tracking error, which is formulated as an optimal control problem. The optimality condition is
used to derive the modification using the gradient method. The optimal control modification results in a stable
adaptation and allows a large adaptive gain to be used for better tracking while providing sufficient stability
robustness. Simulations were conducted for a damaged generic transport aircraft with both standard adaptive
control and the adaptive optimal control modification technique. The results demonstrate the effectiveness of
the proposed modification in tracking a reference model while maintaining a sufficient time delay margin.

I. Introduction

Adaptive control is a potentially promising technology that can improve performance and stability of a conven-
tional fixed-gain controller. In recent years, adaptive control has been receiving a significant amount of attention. In
aerospace applications, adaptive control has been demonstrated in a number of flight vehicles. For example, NASA
has recently conducted a flight test of a neural net intelligent flight control system on board a modified F-15 test
aircraft. 1 The U.S. Air Force and Boeing have successfully developed and completed numerous flight tests of direct
adaptive control on Joint Direct Attack Munitions (JDAM) . 2 The ability to accommodate system uncertainties and to
improve fault tolerance of a control system is a major selling point of adaptive control since traditional gain-scheduling
or fixed-gain control methods are viewed as being less capable of handling off-nominal operating conditions outside
of a normal operating envelope. Nonetheless, these traditional control methods tend to be robust to disturbances and
unmodeled dynamics when operated as intended.

In spite of the advances made in the field of adaptive control, there are several challenges related to the imple-
mentation of adaptive control technology in aerospace systems. These challenges include but are not limited to: 1)
robustness in the presence of unmodeled dynamics3 and exogenous disturbances; 2) stability metrics of adaptive con-
trol as related to adaptive gain and input signals; 3) adaptation in the presence of actuator dynamic constraints; 4)
on-line reconfiguration and control reallocation using non-traditional control effectors; and 5) time-scale separation in
actuator systems with different time latency.

The absence of the verification and validation methods of adaptive control systems remain a major hurdle to the
implementation of adaptive control in safety-critical systems. 4,5 This hurdle can be traced to the lack of performance
and stability metrics for adaptive control which poses a major challenge that prevents adaptive control from being
implemented in safety critical systems. The development of verifiable metrics for adaptive control will be important in
order to mature adaptive control technology for use in operational safety-critical systems. Of these, stability metrics of
adaptive control are an important consideration for assessing system robustness to unmodeled dynamics and exogenous
disturbances. In one aspect of verification and validation, a control system is usually certified by demonstrating that it
meets an acceptable set of requirements or specifications for stability margins, among other things. Herein lies a major
challenge for verification and validation as there is no existing standard tool for stability margin analysis of nonlinear
adaptive control. The lack of stability metrics for adaptive control is viewed as a technology barrier to developing
certifiable adaptive control for safety-critical systems. 4, 5
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Over the past several years, various model-reference adaptive control (MRAC) methods have been investigated. 6–15

The majority of MRAC methods may be classified as direct, indirect, or a combination thereof. Indirect adaptive
control methods are based on identification of unknown plant parameters and certainty-equivalence control schemes
derived from the parameter estimates which are assumed to be their true values. 16 Parameter identification techniques
such as recursive least-squares and neural networks have been used in indirect adaptive control methods. 7 In con-
trast, direct adaptive control methods directly adjust control parameters to account for system uncertainties without
identifying unknown plant parameters explicitly. MRAC methods based on neural networks have been a topic of great
research interest. 8–10 Feedforward neural networks are capable of approximating a generic class of nonlinear functions
on a compact domain within arbitrary tolerance, 17 thus making them suitable for adaptive control applications. In par-
ticular, Rysdyk and Calise described a neural net direct adaptive control method for improving tracking performance
based on a model inversion control architecture. 8 This method is the basis for the intelligent flight control system that
has been developed for the F-15 test aircraft by NASA. Johnson et al. introduced a pseudo-control hedging approach
for dealing with control input characteristics such as actuator saturation, rate limit, and linear input dynamics. 10 Ho-
vakimyan et al. developed an output feedback adaptive control to address issues with parametric uncertainties and
unmodeled dynamics. 12 Cao and Hovakimyan developed an Y1 adaptive control method to address high-gain con-
trol. 13 Nguyen et al. developed a hybrid direct-indirect adaptive control to also deal with high-gain control issues
during adaptation.

While adaptive control has been used with success in a number of applications, the possibility of high-gain control
due to fast adaptation can be an issue. In certain applications, fast adaptation is needed in order to improve tracking
performance when a system is subject to a large source of uncertainties such as structural damage to an aircraft that
could cause large changes in system dynamics. In these situations, a large adaptive gains can be used in the adaptation
in order to reduce the tracking error rapidly. However, there typically exists a balance between stability and adaptation.
It is well known that high-gain control or fast adaptation can result in high-frequency oscillations which can excite
unmodeled dynamics that could adversely affect the stability of an MRAC law. 16 Recognizing this, some recent
adaptive control methods have begun to address high-gain control, such as the Y1 adaptive control 13 and the hybrid
direct-indirect adaptive control. 14 In the former approach, the use of a low-pass filter effectively prevents any high
frequency oscillation that may occur due to fast adaptation. In so doing, the reference model is no longer preserved and
instead must be reconstructed using a predictor model. In the latter approach, direct and indirect adaptive control are
blended together within the same control architecture. The indirect adaptive law is based on a recursive least-squares
parameter estimation that is used to adjust parameters of a nominal controller to reduce the modeling error, and any
remaining tracking error signal could then be handled by a direct adaptive law with a smaller adaptive gain.

Various modifications were developed to increase robustness of MRAC by adding damping to the adaptive law.
Two well-known modifications in adaptive control are the a-modification 16 and ε1 - modification. 18 These modifica-
tions have been used extensively in adaptive control. This paper introduces a new adaptive law based on an optimal
control formulation to minimize the Y2 norm of the tracking error. The optimality condition results in a damping
term proportional to the persistent excitation. The analysis shows that the adaptive optimal control modification can
allow fast adaptation with a large adaptive gain without causing high-frequency oscillations and can provide improved
stability robustness while preserving the tracking performance.

This paper is organized in two major sections. The first section is devoted entirely to the theoretical development
of the new adaptive optimal control law which includes a Lyapunov stability proof and a derivation of an upper bound
of the tracking error. The second section demonstrates a practical implementation of the optimal control modification
in a neural net adaptive flight control architecture for a damaged generic transport aircraft. Simulation results are
presented to demonstrate potential benefits of the new adaptive control law.

2 of 20

American Institute of Aeronautics and Astronautics



II. Theory of Optimal Control Modification

Fig. 1 - Direct MRAC

A direct MRAC problem is posed as follows:
Given a nonlinear plant as

ẋ = Ax + B [u +f (x)]
	

(1)

where x (t) : [0, oo) —> Rn is a state vector, u (t) : [0, oo) —> Rp is a control vector, A E Rn"n and B E Rn"p are known
such that the pair (A, B) is controllable, and f (x) : Rn —> Rp is a bounded unstructured uncertainty.

Assumption 1: The uncertainty f (x) can be approximated using a feedforward neural network in the form

n

f (x) = ∑θ *
i φi

 
(x) + E (x) = Θ *T(D (x) +E (x)	

(2)
i= 1

where O * E Rm"p is an unknown constant weight matrix that represents a parametric uncertainty, (D (x) : Rn —> Rm is
a vector of known bounded basis functions with Lipschitz nonlinearity, and E (x) : Rn —> Rp is an approximation error.

Since (D (x) is Lipschitz, then
II(D (x)—(D (x0 )II < CIIx — x0

	 (3)

for some constant C > 0, which implies a bounded partial derivative

0(D (x) 
< L	 (4)

Ox ^^

for some constant L > 0.
The set of basis functions (D (x) is chosen such that the approximation error E (x) becomes small on a compact

domain x E Rn. The universal approximation theorem for sigmoidal neural networks by Cybenko can be used for
selecting a good set of basis functions (D (x) . 17 Alternatively, the Micchelli’s theorem provides theoretical basis for a
neural net design of ΘT(D (x) using radial basis functions to keep the approximation error E (x) small. 19

Assumption 2: The set ofbasis functions (D (x) satisfies the persistent excitation (PE) condition for some a0 , a 1 , T0 >

r+To

a 1I > 
1	

T(x (c )) dc > a0I, dt > 0 	 (5)
T0

f(D (x (c )) (D

where I is an identity matrix.
The objective is to design a controller that enables the plant to follow a reference model

ẋm = Amxm + B mr
	

(6)

where A m E Rn"n is Hurwitz and known, B m E Rn"p is also known, and r (t) : [0, oo) —> Rp E Loo is a command vector
with ṙ E Loo .

Defining the tracking error as e = x m — x, then the controller u (t) is specified by

u = Kxx +Krr — uad	 (7)
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where Kx E Rpxn and Kr E Rpxp are known nominal gain matrices, and uad E Rp is a direct adaptive signal.
Then, the tracking error equation becomes

ė = ẋm — ẋ = A m e + (Am — A — BKx) x + (Bm — BKr ) r + B 

[

uad — O 
*T(D (x) — E (x)]	 (8)

We choose the gain matrices Kx and Kr to satisfy the model matching conditions A + BKx = Am and BKr = Bm .

The adaptive signal uad is an estimator of the parametric uncertainty in the plant such that

uad = OT(D (x)
	

(9)

where O E Rmxp is an estimate of the parametric uncertainty O*.

Let Õ = O — O * be an estimation error of the parametric uncertainty. Then the tracking error equation can be
expressed as

ė = A m e +B (O T(D — E)	 (10)

Proposition 1: The following adaptive law provides an update law that minimizes^̂ e ^̂
2̂

O = —F(D (eTP — v(DTOBTPAm
1 ) B	 (11)

where F = FT > 0 E Rmxm is an adaptive gain matrix, v > 0 E R is a weighting constant, and P = PT > 0 E Rnxn

solves
PAm +A T

mP = — Q	 (12)

where Q = QT > 0 E Rnxn.

Proof: The adaptive law seeks to minimize the cost function

J=2J
rt

f (e — A )T
Q (e — A ) dt 	 (13)

0

subject to Eq. (10) where A represents the tracking error at t = tf .

J is convex and represents the distance measured from the normal surface of a ball Br with a radius A.

Fig. 2 - Tracking Error Bound

This optimal control problem can be formulated by the Pontryagin’s Minimum Principle. Defining a Hamiltonian

H(e , (;) = 
12 

(e — A)T
Q (e — A)+pT (Am

 e
+ BO T(D — BE

)

	 (14)

where p (t) : [0, oo) —> Rn is an adjoint variable, then the necessary condition gives

ṗ = —∇HT
e  = —Q (e — A) — A T

mp	 (15)

with the transversality condition p (tf) = 0 since e (0) is known. The optimality condition is obtained by

∇HÕT = (D∇HÕT(D = 
(DpTB	 (16)
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The adaptive law is formulated by the gradient method as

Θ̃˙ = —Γ∇HΘ̃T = —ΓΦpTB 	 (17)

The solution of p can be obtained using a “sweeping” method20 by letting p = Pe + SΘ TΦ. Then

T

Pe +P
(

A m e +BΘTΦ — BΘ *TΦ — Bε) + SΘTΦ +Sd 
dt

Φ

 
—Q (e — Δ )—AT

 
(

Pee + SΘ TΦ) 	 (18)

which yields the following equations
Ṗ +PAm +AT

mP + Q = 0 	 (19)

Ṡ +PB +A T
mS = 0	 (20)

QΔ — S
d

(

dt

TΦ) 
+PB

(

Θ *TΦ +ε) = 0	 (21)

subject to the transversality conditions P 
(
tf) = 0 and S 

(
tf) = 0.

The existence and uniqueness of the solution of the Lyapunov differential equation (19) is well-established. It
follows that Eq. (20) also has a stable, unique solution in time-to-go τ = tf — t.

Since ṙ E Y∞ , Φ is bounded and Lipschitz, and p 
(
tf) = 0 from the transversality condition, then as tf —> ∞,

limtf—>∞ d 
(
Θ TΦ) /dt I exists, where

T

fim 
d 

(

dt 

Φ) 
= 

t
fim —BTp 

(
tf) ΦT ΓΦ + Θ T

 ∂Φ 

[

ẋm
 
—

 
B 
(

Θ T Φ
t —>∞

< lim Θ TL0
[

—A m
1 Bm ṙ — B

(

Θ TΦ — ε
)] 

= σt (22)
tf—>∞

for some constant vector σt > 0 E Rn , and 0 E Rm xn is a matrix whose elements are all equal to one.
Consider an infinite time-horizon problem as tf —> ∞, then P (t ) —> P (0) and S (t ) —> S (0). The constant solutions

of P and S are determined by their steady state values from Eqs. (19) and (20) that give

The adjoint p is then obtained as

PAm +A T
mP = —Q 	 (23)

S = —Am
TPB	 (24)

p = Pe — νAm
TPBΘ T Φ 	 (25)

where ν is introduced as a weighting constant to allow for adjustments of the second term in the adaptive law. Since
Θ * is constant, then the adaptive law (11) is obtained from Eqs. (75) and (25).

Defining δε = supt Iε I and ϕ = supt I Θ *T , then for ν = 1 the unknown tracking error Δ at t = tf —> ∞ is bounded
by

	

IIΔ II < 
λmax 

λm

(P
(Q) II I 

I Iϕ II + IIδε II + 
σm

IIσ

(A M )m) J	
(26)

where λ and σ denote the eigenvalue and singular value, respectively. 	 J

n

Theorem 1: The adaptive law (11) results in stable and uniformly bounded tracking error outside a compact set

	

r
	 2

71/ = e ,Θ TΦ E Rn : λmin (Q) 
[

(IIe II — Δ 1 )2 — Δl] +νλmin 

(

BTAm
TQAm

1 B)	 — Δ2 < 0 (27)2

where	

Δ 1 = 
λmax (P) IIB II IIδε II	 (28)

λmin (Q)

Δ2
 = 

σmax 

(
BTPAm 1 B) IIϕ II	 (29)

λmin 

(

BTAm
TQA m

1 B)
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Proof: Choose a Lyapunov candidate function

V = eTPe + trace ((;Tr,— 1 (;
)
	 (30)

Evaluating V̇ yields

V = eT (AmP +PAm ) e + 2eTPB(O T(D — e
)

— 2trace
[
O T(D (eTPB — V(D TOBTPAM 1

B)]
	 (31)

Using the trace identity trace (ATB) = BAT , V̇ can be written as

V̇ = —eTQe + 2eTPB (O T(D — e ) — 2eTPBO T(D + 2V(D TOBTPAM 1 BO T(D	 (32)

The sign-definiteness of the term PAM 1 is now considered. We recall that a general real matrix G is positive
(negative) definite if and only if its symmetric part G = 12 

(G + GT) is also positive (negative) definite. Then, by pre-
and post-multiplication of Eq. (12) by AMT and A —1

m , respectively, PAm
1 can be decomposed into a symmetric part M

and anti-symmetric part N as
PAM 1 = M+N	 (33)

where

	

M =
2 

(AMTP + PAM 1
) 1

AMTQAM 1 	 (34)

N =
2
 (PAm

1 — Am
TP) .	 (35)

Since the symmetric part M < 0, we conclude that PAM 1 < 0. Then, V̇ becomes

V̇ = —eTQe — 2eTPBe — V(DTOBTAMTQAM 1 BOT(D + 2V(DTOBTNBOT(D + 2V(D TO *BTPAM 1 BOT(D (36)

Letting y = BÕT (D and using the property yTNy = 0 for an anti-symmetric matrix N, V̇ is reduced to

V̇ = —eT Qe — 2eTPBe — V(D TOBTA m
T QA m 1 BOT (D + 2V(D T

O *BTPA m 
1 BO T (D	 (37)

which is bounded by

V < —, ,min (Q) 11e 112 + 2 11e 11 , ,max (P) 11B 11 116e11— V, ,min (BTAMTQAM 1 B) OT(D 
2

+ 2Vamax (BTPAm
1
B) 

O *T(D OT(D (38)

By completing the squares, an upper bound of V̇ is obtained as

	

V̇ < —, ,min (Q) [(11e 11 — A 1 )2 — AI ] — V, ,min (BT
A-

T QA m
1B) ( 	 — A2

) 2
 — AZ 	 (39)

If 71/ is a compact set defined in Eq. (27), then the time rate of change of the Lyapunov candidate function is
strictly semi-negative in the complementary set 71/c and positive in the compact set 71/. Thus, the Lyapunov candidate
function V decreases everywhere in the complementary set 71/c , but increases in the compact set 71/ which contains
the origin at e = 0 and Õ = 0. Any trajectory of e and Õ starting in 71/ will remain in 71/ for all t. Therefore, the
compact set 71/ is an invariant set. 16 Then, any trajectory e and Õ starting in the complementary set 71/c will approach
the largest invariant set 71/ as t —> oo . 21 It follows by the LaSalle’s Invariance Principle that e and Õ are ultimately
uniformly bounded. Thus, the adaptive optimal control modification is stable.

n

Remark: The effect of the optimal control modification is to add damping to the weight update law so as to reduce
high-frequency oscillations in the weights. The damping term depends on the persistent excitation (PE) condition.
With persistent excitation, the weight O is exponentially stable and bounded. This scheme is contrasted to the well-
known a -16 and e 1 - 18 modification methods and other variances which also add damping terms to prevent parameter
drift in the absence of the persistent excitation. 18 These adaptive laws are compared as follows:
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Modification Adaptive Law

a- Ȯ =—F 
(
(D eTPB +aO

)
, a > 0

e 1 -
^

Ȯ = —F
(
(D eTPB +µ eTPB ̂O ), µ > 0

Optimal Ȯ = —F (DeTPB — V(D(DTOBTPAm 1 B
)
, V > 0

Table 1 - Modifications to MRAC Law

Theorem 2: In the presence of fast adaptation, i.e., Amin (F) » 1, the adaptive law (11) is robustly stable for V = 1
with all closed-loop poles having negative real values.

Proof: The adaptive law (11) can be written as

(D TȮ

(D TF(D 
—
(
eTP — V(DT

OBTPA m
1
)

B	 (40)

If F » 1 is large and the input is PE, then in the limit as (D TF(D —> oo

BO
T

(D —> 1 P— 1A T
m Pe

V
	 (41)

Hence, the closed-loop tracking error equation becomes

ė =—P—1

L(
1+V

)

Q —
(

1

2V

V
)

S

J

e — B
(
O

*T
(D +e)	 (42)

where S = AmT P — PA m .

For V = 1, the closed-loop poles are all real, negative values with Re [s]=—A
(
P— 1 Q

)
. The system transfer

function matrix H (s) = 
(
sI +P—1 Q

) —1
 is strictly positive real (SPR) since H (j[o ) + HT ( —j[o) > 0, and thus the

system is minimum phase and dissipative. 22 The Nyquist plot of a strictly stable transfer function for a SISO system
is strictly in the right half plane with a phase shift less than or equal to z 

,22 corresponding to a phase margin of at least
1. For a MIMO system, the diagonal elements of the system transfer function matrix exhibit a similar behavior.

n

Lemma 1: The equilibrium state y = 0 of the differential equation

ẏ = — (DT (t ) F(D (t )y 	 (43)

where y (t) : [0, oo) —> R, (D (t) E Y2 : [0, oo) —> Rn is a piecewise continuous and bounded function, and F > 0 E Rn ×
n,

is uniformly asymptotically stable, if there exists a constant y > 0 such that

1	 t+T0

(D
T (T) F(D (T) dT > y	 (44)

T0 t

which implies that y is locally bounded by the solution of a linear differential equation

ż = — yz 	 (45)

for t E [ti , ti + T0], where ti = ti — 1 + T0 and i = 1, 2, ... , n —> oo.

Proof: Choose a Lyapunov candidate function and evaluate its time derivative

V =
2
y21

(46)

V̇ = — (D T (t ) F(D (t )y2 = —2(D
T (t ) F(D (t ) V	 (47)

Then, there exists y > 0 for which V is uniformly asymptotically stable since

t	 0+T	
)

V (t + To ) = V (t ) exp 
(

—2 f (D
T (T) F(D (T) dT < V (t ) e— 2yT0 	 (48)

t
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This implies that

\

/	 t+T0 	 \
exp I —2	 (DT (T ) r (D (T ) dT 

///
I < e—2yT0 	 (49)

r
Thus, the equilibrium y = 0 is uniformly asymptotically stable if

T0 r

1 t+T0 

(D
T (T ) r(D (T ) dT > y

	
(50)

provided (D (t) E Y2 is bounded.
Then y (t) E Y2 n Yoo since

V (t —> oo) — V (0) < —2y fy2 (t ) dt =:^ 2y fy2 (t ) dt < V (0) — V (t —> oo) < oo 	 (51)

It follows that

	

V̇ < —2yV =:^ yẏ < — yy2	 (52)

which implies that the solution of Eq. (43) is bounded from above ify > 0 and from below ify < 0 by the local solution
of

ż = — yz 	 (53)

for t E [ti, ti + T0], where t0 = 0, ti = ti— 1 + T0 , and i = 1, 2, ... , n —> oo.

Now, suppose that (D = (D (y), Eq. (53) still applies. The condition (D (y (t)) E Y2 is identically satisfied since
y E Y2 n Yoo. To show this, we first evaluate V̇ as

V̇ = — (DT (y) r(D (y)y2 = —2(DT (y) r(D (y) V	 (54)

Expressing V (t ) as V (y) yields

V̇ = ˙
ydV

 dy 
= — (DT (y) r(D (y)

ydV
 dy 

= —2(D T (y) r(D (y) V	 (55)

Thus
dV 

= 2
dy

V	 y

Suppose we can find y such that

dy < — ydt	 (57)
y

Then multiplying both sides of Eq. (57) by y2 and dividing by dt result in the same equation as Eq. (52). Thus, V
is uniformly asymptotically stable and y is bounded by the same equation as Eq. (53). Therefore, y given by Eq. (44)
satisfies Eq. (57).

Lemma 1 is a version of the well-known Comparison Lemma. 21 A different version of the proof is also provided
by Nadrenda and Annaswamy.23

n

Lemma 2: The solution of a linear differential equation

ẏ = Ay +g (t)
	

(58)

where y (t) : [0, oo) —> Rn , A E Rn x n is a Hurwitz matrix, and g (t) : [0, oo) —> Rn E Yoo is a piecewise continuous,
bounded function, is asymptotically stable and semi-globally bounded from above by the solution of a differential
equation

ż = A
(
z — a I A —1 c 1)	 (59)

where a > 1 E R and c = supt 1g (t ) 1.
Proof: For matching initial conditions y (0) = z (0 ), the solutions ofy and z are

t

y = e
At

y (0) + f
o 

eA (t —T )g (T ) dT	 (60)

(56)
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t

z = eAty (0 ) - f eA (t -T)aA
 
A -1 c dT 	 (61)

0

IfA -1 c > 0, then

t

	

y = z + f	 IeA (r-T
) 	 eA (t -T)g (T ) dT = z + f 

t

eA (t -T)A [aA -1 c +A -1g (T ) ] dT 	 (62)

	

0	 0

a > 1 can be made large enough for aA -1 c + A -1g ( T ) > 0 because A -1 c > 0 and g is bounded, and sinceft

0
 eA (t -T)AdT < 0, then

f

t

eA (t-T )A [aA -1 c +A -1g (T )] dT < 0	 (63)

Therefore, y < z.
IfA -1 c < 0, then

t

	

y = z-
I

eA (t -T)acdT + f
t

eA (t -T)g (T ) dT = z - eA (t -T)A [aA -1 c -A -1g (T ) ] dT 	 (64)
0	 0

a can be made large enough for aA -1 c - A -1g (T ) < 0 because A- 1 c < 0 and g is bounded, therefore y < z. Thus,
y < z for all t E [0 , oo) and some a > 1.

n

Theorem 3: The steady state tracking error is bounded by

"max (P)I IB I I	
I I (PI I + V I IAmIIII m 1III1 E II+

1
	 BTA -TPBim sup I Ie I I = 

6min (AmP + VPA m ) 
[V	 A- s	

y	
m	 I I/3 I I]	 (65)

t→oo t

if there exists a constant y > 0 such that y = inft 
(

T0
t

t+T0 (DTI'(DdT) > 0 E R and a constant vector /3 > 0 E Rn where

= supt I O Td) .

Proof: Since Õ is bounded by the adaptive law (11) and limtf→oo d 
(
O T(D) /dt < at exists which implies d 

(
OT(D) /dt

is bounded, then /3 = sup t I O Td) I E Yoo is bounded.
Since e E Y2, x E Y2, and so (D (x) E Y2, then using Lemma 1, the adaptive law (11) can be written as

dt (O( 	
1TID) =OTjD +O

TC< — yBTPe +yVBTAm
TPB OT(D — T— 

(

yvBTAm
TPB)	 (66)

for t E [ti, ti + T0 ] , where ti = ti- 1 + T0 and i = 1, 2, ... , n → oo.

Using Lemma 2 with a = 1 for simplicity, we write

ė < Am 

(
e -

 Am 1 BSE
 ) +BO T(D
	

(67)

Differentiating Eq. (67) and upon substitution yields

ë - 
(

Am + yVBBTAm
TP) ė + 

(

yBBTP + yVBBTAm
T PA m) e < -yVBBTA -TPB (p + 

(

yVBT
 Am

T PB) 
1 

/3

+ yVBBTA M
TPA m  A m

1 BSE I (68)

whose steady state solution is

1(

Am
T P + VPAm) 

t 
lim e < - VPB cp + 

(

yVBT A-
-

' pPB) /3 + VPAm  A m 1 BSE
	

(69)
→oo

which leads to Eq. (65).
The steady state upper bound on the norm of Õ T(D is also obtained as

^	 ^

lim sup O T (D 	
"max (P) I IAm I I f V I Iw I I+ I IA m I I 11A M 1 I I I ISE I I+ 

1
	 I I 	 (70)

t→oo t	 6min (A mP + VPA m ) L	 y ( m
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Thus for y —> oo, the last term on the RHS of Eq. (65) goes to zero, and lle ll is only dependent on v. If, in addition,
v —> 0, then lle ll —> 0, but if v —> oo, e E Loo is finite and does not tend to zero. Thus, v has to be selected small
enough to provide a desired tracking performance, but large enough to provide sufficient robustness against time delay
or unmodeled dynamics. With v = 1 as the optimal value, further increase the value of v beyond the optimal value will
actually reduce robustness as well as tracking performance. Thus, a practical bound for v is 0 < v < 1. Both Theorems
2 and 3 provide a guidance in a trade-off design process for selecting a suitable value of v to meet performance and
robustness requirements.

n

III. Application to Neural Net Adaptive Flight Control

',Model	 +	 `'^;^ 	 Dyna	 f",	 ':Y

Reference	 P,liConYroller	 _	
mic

Inversion	 Qircraff

[u -

x;fu
Dire ^^NN

Fig. 3 - Direct Neural Network Adaptive Flight Control

Consider the following inner loop adaptive flight control architecture as shown in Fig. 3. The control architecture
comprises: 1) a reference model that translates rate commands into desired acceleration commands, 2) a proportional-
integral (PI) feedback control for rate stabilization and tracking, 3) a dynamic inversion controller that computes
actuator commands using desired acceleration commands, and 4) a neural net direct MRAC with the optimal control
modification.

Damage adaptive flight control can be used to provide consistent handling qualities and restore stability of aircraft
under off-nominal flight conditions such as those due to failures or damage. The linearized equations of motion are
expressed as

	

ẋ = A 11 x +A 12z + B 1 u +f1 (x , z)	 (71)

	

ż = A21x + A22z + B2u +f2 (x , z)	 (72)
T

where Aij and B i , i = 1 , 2, j = 1 , 2 are known, x = [ p q r ] is a vector of roll, pitch, and yaw rates; z =

[T

AO Aa Ap AV Ah AB ] is a vector of perturbation in the bank angle AO, angle of attack Aa, sideslip
T

angle Ap, airspeed A V, altitude Ah , and pitch angle A0; u = [ ASa ASe ASr ] is a vector of additional aileron,

elevator, and rudder deflections; and fi (x , z), i = 1, 2 is an uncertainty due to damage which can be approximated as

fi (x , z) = Θ
T
i  (D (x , z) + c	 (73)

(D (x , z) is a basis function for a sigma-pi neural network with Ci , i = 1,... , 4, as inputs consisting of control
commands, sensor feedback, and bias terms; defined as follows:

C1 = 
2 P (h ) V2

 [ x
T axT pxT ] 	 (74)

	

C2 = 2 p (h ) V2 [ 1 0 0 a p a2 p 2 ap ]	 (75)

	

C3 = 
1 (h ) V2

 [ u (x ,z)T
 au (x ,z)T

 p u (x ,z)T
 ]	 (76)

C4 = ZP (h ) V
2
 [ pxT qxT rxT ]	 (77)
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where 0 = φ̄ + Aφ , a = ā + Aa, P = P̄ + AP , V = V̄ + AV, h = h̄ + Ah, and d = d̄ + Ad ; and the overbar symbol
denotes a trim state.

These inputs are designed to model the unknown nonlinearity that exists in the damaged aircraft plant dynamics.
For example, the aerodynamic force in the x-axis for an aircraft is given by

1¯
pb 	 qc	 rb	 1

Fx = T +
2

qS

(

CL0 + CLa a + CLP P + CLp 2v + CLq 2V
+ CLr 2v

+ CLSa Sa + CLSe Se + CLSr SrJ a

— 2 qS

(

CD0 + CDa a + CDp 2v + CDq 2V + CDr2V + CDSa Sa + CDSe Se + CDSr Sr 

\ I 

(78)

Thus, C1 , C2 , and C3 are designed to model the product terms of x, z, and u in the aerodynamic forces and moments
equations; and C4 models the gyroscopic cross-coupling terms of x in the moment equations.

The inner loop rate feedback control is designed to improve aircraft rate response characteristics such as the short
period mode and the dutch roll mode. A second-order reference model is specified to provide desired handling qualities
with good damping and natural frequency characteristics as follows:

(s2 + 2 p̂w ps + w 2 )
Om = gpSlat	 (79)p

(s2 + 2^qwqs + wq) dm = gqSlon	 (80)
(
s2 + 2^rwrs + wr

)
rm = grSrud (81)

where 0m , dm , and Wm are reference bank, pitch, and heading angles; wp , wq , and wr are the natural frequencies for
desired handling qualities in the roll, pitch, and yaw axes; p̂ , ^q , and ^r are the desired damping ratios; Slat, Slon, and
Srud are the lateral stick input, longitudinal stick input, and rudder pedal input; and gp, gq, and gr are input gains.

Let pm = φ̇m , qm = ḋm , and rm = ψ̇m be the reference roll, pitch, and yaw rates. Then the reference model can be
represented as

I

t

ẋm = —Kpxm —Kixmd i + Gr	 (82)

T
where xm = [ pm qm rm ] , Kp = diag (2 p̂wp , 2^qw q, 2^4)r ) , Ki = diag 

(
wP , w 2

q , w 2
r ) , G = diag (gp ,gq ,gr ), and

r = [ Slat Slon Srud ] 

T .

Assuming the pair (A 11 ,B 1) is controllable and z is stabilizable, an angular rate feedback dynamic inversion con-
troller is computed as 	

r /	 \	 1
uc = B 1

1
 L— I Kp +

Kt 
I x + Gr —A 11x —A 12z —OT1 (

J 	
(83)

s ///

where uc is a control surface deflection command vector as an input to a flight control actuator system which can be
modeled as a first-order system

	

u = —Λ (u — uc)	 (84)

where A = diag (λa ,λe , λr) > 0 is a vector of actuator rates for aileron, elevator, and rudder.
When the actuator dynamics are fast relative to the reference model, i.e., Amin (A) » σmin (Am ), then the actuator

output follows the input closely so that u ,: uc.
T

Let e = [ ó (xm — x) d i xm — x ] be the tracking error, then the tracking error equation is given by

ė = Ame +B 

(
0 1

T  — f1

)
	 (85)

"	 #

Am
0	 I	

(86)=
— 

r

Ki —Kp

B = I 0	 (87)

where
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Let Q = 2I, then the solution of Eq. (12) yields
"	 #

P = 
K, 1 Kp +Kp 

1 (Ki + I)	 Ki
— 1

	 0
Ki—

1 	Kp 1 (I + Ki 
1 \	 (88)

Am
1 is computed to be	 "	 #

A — 1 = —K^ 1 Kp —Ki 1	
(89)m

	 I	 0

Evaluating the term BTPAm
1 B yields

BTPA m
1 B = —Ki

—2 < 0	 (90)

Applying the adaptive optimal control modification (11), the weight update law is then given by

0̇ 1 = —F(D (eTPB + v^
T0 1 Ki 

2)	 (91)

IV. Simulation Results

To evaluate the adaptive optimal control modification, a simulation was conducted using a generic transport model
(GTM) which represents a notational twin-engine transport aircraft as shown in Fig. 4. 24 An aerodynamic model of
the damaged aircraft is created using a vortex lattice method to estimate aerodynamic coefficients, and stability and
control derivatives. For the simulation, a damage configuration is modeled corresponding to a 28% loss of the left
wing. The damage causes an estimated C.G. shift mostly along the pitch axis with Ay = 0 .0388 c̄ and an estimated
mass loss of 1.2%. The principal moment of inertia about the roll axis is reduced by 12%, while changes in the inertia
values in the other two axes are not as significant. Since the damaged aircraft is asymmetric, the inertia tensor has
all six non-zero elements. This means that all the three roll, pitch, and yaw axes are coupled together throughout the
flight regime.

Fig. 4 - Left Wing Damaged Generic Transport Model

A level flight condition of Mach 0.6 at 15,000 ft is selected. Upon damage, the aircraft is re-trimmed with T =
13 , 951 lb, & = 5 .86 o , j = —3 . 16 o, Sa = 27 .32 o, Se = —0 .53 o, Sr = — 1 .26o . The remaining right aileron is the
only roll control effector available. In practice, some aircraft can control a roll motion with spoilers, which are not
modeled in this study. The reference model is specified by [op = 2 . 0 rad/sec, [oq = 1 . 5 rad/sec, [or = 1 . 0 rad/sec, and

p̂ = ^q = r̂ = 1 /r2.
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⎡ 	 ⎤
AO

	

⎤
0

⎢
Aa

⎢ 	 ⎥

0	
AP ⎥

	0
⎢ A V/V
⎢ 	 ⎥

⎣
Ah/h̄ ⎦

AB

0 . 0004
-0 . 0004

0

⎡
3 . 2225

+ ⎢
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0 . 3393

-0 . 0123

-0 . 0449 1 .4887
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ASa

⎡ 	 ⎤

-3 .4650 0 .0258
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ASe

0 . 0007 -2 .2949 

⎦ ⎣

ASr 
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AȮ
⎡ 	 ⎤

1
⎡

0 0 . 1024
⎤

⎢
Aȧ

⎥⎢
-0 . 0059 0 . 9722 0 . 0004⎥⎢

AṖ ⎥
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⎥
⎥

p
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A V̇/V
=

0 .0001 -0 .0014 -0 .0006 ⎥ q

⎢
Aḣ/h
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0 0 0

⎥
⎥

r

A6 0 1 0 . 0551	
⎦

⎡
0 0 0 0 0

⎢
⎢ 0 . 0028 -0 .4802 0 . 0238 -0 . 0648 0 . 0304
⎢ 
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⎦

⎤
0	 0

-0 . 0704 -0 . 0012
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⎥⎡
	 ⎤

⎥
⎥ ⎢ 	 ⎥
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0 0
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0 0	

⎦

(93)

The state space model of the damaged aircraft is given by

⎡ ⎤ ⎡ 	 ⎤ ⎡ ⎤
ṗ 	 - 1 . 3623 -0 .2649	 0 . 5470	 p

⎢
q̇

⎥
=

⎢
-0 .0659 -0 .8949	 0 .0151

⎥⎢
⎦ ⎣ q ⎦

ṙ	 0 .0835 -0 . 00417 -0 . 5130	 r

	

⎡
0	 - 10 . 9768 -9 .2449 -0 . 6380

+ ⎢
⎣

-0 . 0007 -2 .7042 -0 . 0120 -0 . 1409

	

0	 0 . 1845	 2 .8755 -0 . 0149

The actuator dynamics are modeled with.,a =.,e =.,r = 50 /sec with position limits of ±35 o for the aileron and
elevator and ± 10o for the rudder.

The pilot pitch rate command is simulated with a series of ramp input longitudinal stick command doublets,
corresponding to the reference pitch angle ±3 .81 o from trim. The tracking performance of the baseline flight control
with no adaptation is compared against the neural net direct MRAC, the E 1 modification with µ = 0. 1, and the present
adaptive optimal control modification with v = 0 . 1. The adaptive gains are selected as large as possible within the
numerical stability limit of the adaptive laws. This results in I' = 60 for direct MRAC, I' = 800 for the E 1 modification,
and I' = 2580 for the adaptive optimal control modification. Thus, it can be seen that the optimal control modification
can tolerate a much larger adaptive gain than the standard MRAC. This large adaptive gain allows the adaptive optimal
control modification to better adapt to uncertainties than the standard direct MRAC.
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Fig. 5 - Pitch Rate

The aircraft angular rate responses are shown in Figs. 5 to 8. Figure 5 illustrates the pitch rate response due to the
four controllers. With no adaptation, the baseline flight control system cannot follow the reference pitch rate very well
as there is a significant overshoot. Both the direct MRAC and the e1 modification improves the tracking by about the
same amount. However, the adaptive optimal control modification appears to provide better tracking than the MRAC
and the e1 modification.

Since the damage occurs to one of the wings, the roll axis is most affected. With no adaptation, there is a significant
roll rate as high as 20 o/sec as shown in Fig. 6. Both the direct MRAC and e1 modification reduce to maximum
amplitude of the roll rate to about 10 o/sec. The adaptive optimal control modification further reduces the roll rate to a
maximum value of about 4 o /sec.
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Fig. 6 - Roll Rate

Figure 7 is the yaw rate response of the damaged aircraft. All the three adaptive controllers significantly reduce the
roll rate to a reasonably low level. The e1 modification performs slightly better than the MRAC and adaptive optimal
control modification.
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Fig. 7 - Yaw Rate

Figure 8 is the plot of the tracking error Y2 norm for all the three aircraft angular rates that compares the overall
performance of the four controllers collectively in the three axes. When there is no adaptation, the tracking error norm
appears to grow considerably in the first 10 sec. The E1 modification actually results in higher tracking error than
the direct MRAC. This could be explained by the fact that the E1 modification trades performance for robustness, so
the tracking performance is expected to be worse. The adaptive optimal control modification results in the smallest
tracking error norm as compared to the MRAC and E1 modification. Thus, overall, the adaptive optimal control
modification performs significantly better than the MRAC and E1 modification.
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Fig. 8 - Tracking Error Norm

The attitude responses of the damaged aircraft are shown in Figs. 9 to 12. When there is no adaptation, the pitch
attitude could not be followed accurately as seen in Fig. 9. With adaptation on, the tracking is much improved and the
adaptive optimal control modification follows the pitch command better than the direct MRAC and the E1 modification.
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Fig. 9 - Pitch Angle

Figure 10 is the plot of the bank angle. Without adaptation, the damaged aircraft exhibits a rather severe roll
behavior with the bank angle ranging from —30 o to 20o . Both the direct MRAC and ε1 modification improve the
situation significantly. The adaptive optimal control shows a drastic improvement in the arrest of the roll motion with
the bank angle maintained closed to the trim value.
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Fig. 10 -Bank Angle

Figure 11 is a plot of the angle of attack. All the adaptive controllers produce similar angle of attack responses.
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Fig. 11 - Angle of Attack

Figure 12 shows a plot of the sideslip angle. In general, flying with sideslip angle is not a common practice
since a large sideslip angle can cause an increase in drag and more importantly a decrease in the yaw damping. With
the adaptive optimal control modification, the sideslip angle is reduced to near zero, while the direct MRAC and s1

modification still show some sideslip angle responses.
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Fig. 12 - Sideslip Angle

The control surface deflections are plotted in Figs. 10 to 12. Because of the wing damage, the damaged aircraft has
to be trimmed with a rather large aileron deflection. This causes the roll control authority to severely decrease. Any
pitch maneuver can potentially run into a control saturation in the roll axis due to the pitch-roll coupling that exists in
a wing damage scenario. With the maximum aileron deflection at 35 o , it can be seen clearly from Fig. 13 that a roll
control saturation is present in all cases. The range of aileron deflection when there is no adaptation is quite large. As
the aileron deflection hits the maximum position limit, it tends to over-compensate in the down swing because of the
large pitch rate error produced by the control saturation.
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Fig. 13 - Aileron Deflection

Figure 14 is a plot of the elevator deflection which is shown to be within a range of few degrees for all the four
controllers and well within the control authority of the elevator. This implies that the roll control contributes mostly to
the overall response of the wing-damaged aircraft.
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Fig. 14 - Elevator Deflection

The rudder deflection is shown in Fig. 15. With no adaptation, the rudder deflection is quite active, going from
almost —7o to 2 o . While this appears small, it should be compared relative to the rudder position limit, which is
usually reduced as the airspeed and altitude increase. The absolute rudder position limit is ± 10o but in practice the
actual rudder position limit may be less. Therefore, it is usually desired to keep the rudder deflection as small as
possible. Both the direct MRAC and ε1 modification improve the situation somewhat, but the adaptive optimal control
is able to keep the rudder deflection quite small and virtually almost at trim.
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Fig. 15 - Rudder Deflection

To demonstrate stability robustness of the adaptive optimal control modification, the time delay margin (TDM)
is computed numerically in the simulations as a function of the parameter v. A time delay is introduced between
the actuators and the damaged aircraft plant model and is adjusted until the adaptive optimal control modification
algorithm is on the verge of instability. The results are plotted in Fig. 16 for an adaptive gain r = 60. As v increases,
the time delay margin also increases. This results in a more robust controller that can tolerate a larger time delay which
acts as a destabilizing disturbance to the controller. However, for the same adaptive gain, increasing v tends to degrade
the tracking performance. Therefore, in general, v is selected to balance the competing requirements for performance
and stability robustness that usually exist in a control design.
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V. Conclusions

This study presents a new modification to the standard model-reference adaptive control based on an optimal
control formulation of minimizing the Y2 norm of the tracking error. The adaptive optimal control modification adds
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a damping term to the adaptive law that is proportional to the persistent excitation. The modification enables fast
adaptation without sacrificing robustness. The modification can be tuned using a parameter v to provide a trade-off
between tracking performance and stability robustness. Increasing v results in better stability margins but reduced
tracking performance. When v approaches unity, the system is robustly stable with all closed-loop poles having
negative real values. Simulations of a damaged generic transport aircraft were conducted. The results demonstrate the
effectiveness of the adaptive optimal modification, which shows that tracking performance can be achieved at a much
larger adaptive gain than the standard direct model-reference adaptive control. As a result, significant improvements
in performance can be attained with the adaptive optimal control modification.
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